

NOVATOP ELEMENT TECHNISCHE DOKUMENTATION

INHALT

NOVATOP ELEMENT

für Decken und Dächer

Datenblatt
Typen
Formaten
Mechanische Eigenschaften6-
Vorbemessung
Bautechnische Eigenschaften
Schallschutz
Verarbeitung, Verpackung und Kennzeichnung
Lagerung, Transport
Handhabung, Montage

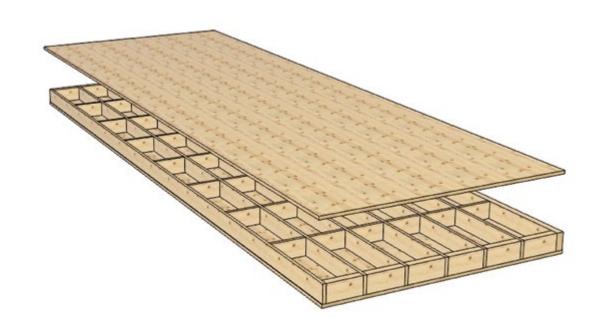
ZERTIFIKATE, ZEUGNISSE UND PROTOKOLLE

ETA-11/0310 NT ELEMENT, TaZÚS Leistungserklärung NT ELEMENT Zertifikat über die Beständigkeit der Eigenschaften NT ELEMENT, TaZÚS Klassifizierungsprotokoll des Feuerwiderstandes NT ELEMENT, Fires Luftschall / Trittschall – Prüfzeugnis, CSI

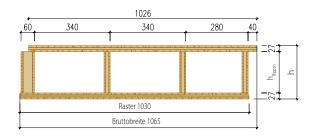
Zertifikate des Herstellers AGROP NOVA a.s. sind auf den Firmen-Webseiten <u>novatop-system.com</u> zu finden.

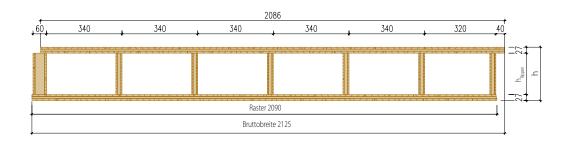
Version: 04/2020

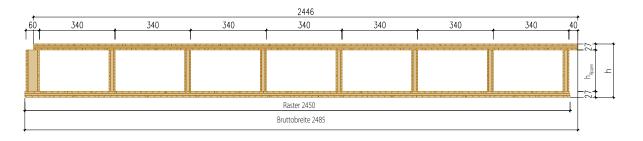
NOVATOP ELEMENT DATENBLATT


BESCHREIBUNG

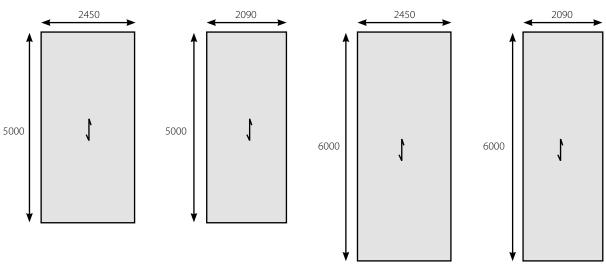
NOVATOP ELEMENT sind großflächige aus den mehrschichtigen massiven Fichtenplatten gefertigte Rippenkonstruktionen. Die Elementkonstruktion ist durch eine tragfähige untere Mehrschichtplatte gebildet, deren Stärke von der verlangten Brandfestigkeit der Konstruktion abhängig ist. Auf dieser Platte sind Längs- und Querrippen geklebt, deren Höhe von der verlangten Tragfähigkeit des Elements abhängig ist. Die ganze Konstruktion ist mit einer oberen Mehrschichtplatte abgeschlossen.


Verwendung	für Decken und Dächer
Anforderungen	ETA-11/0310
Holzarten	heimische Fichte
Oberflächenqualität	Wohnsichtqualität WSI (entspricht B), Nicht-Sichtqualität NSI (entspricht C) Klassifizierung der Qualität laut Innenvorschriften von AGROP NOVA a.s.
Großflächiges Format	Max. 12.000 x 2.450 mm
Standardformate (mm)	Höhen: 160, 180, 200, 220, 240, 280, 300, 320, max. 400 Breiten: 1030, 2090, 2450, max. 2.450 Längen: sind individuell wählbar, nach Projekt-Dokumentation. Standard 6 m max. 12 m (Verlängerung durch Generalkeilzinkstoß mit Innenverstärkung).
Maßtoleranzen	Nennbreite- und -Längentoleranz ±2 mm Seitengeradheit: ±1 mm/m Rechtwinkligkeit: ±1 mm/m
Oberfläche	Geschliffen - K 50, 100
Leim	Melaminharz nach EN 301, PU nach EN 15425
Formaldehyd-Emissionsklasse	E1 nach EN 717-1, Werte siehe Prüfzeugnisse
Holzfeuchte	10 ± 3 %
Spezifische Wärmekapazität c _p	1.600 J/kg.K nach EN ISO 10456
Schwind- und Quellkoeffizient	α (%/%) 0,002 - 0,012 %
Spezifisches Gewicht	ca. 490 kg/m³
Brandverhalten	D-s2,d0 nach EN 13501-1
Wärmeleitfähigkeit (λ) der für die Produktion verwendeten Platten	0,13 W/mK, bei Dichte 490 kg/m³ nach EN ISO 10456
Diffusionswiderstand (μ) der für die Produktion verwendeten Platten	200/70 (trocken/feucht) nach EN ISO 10456




NOVATOP ELEMENT TYPEN

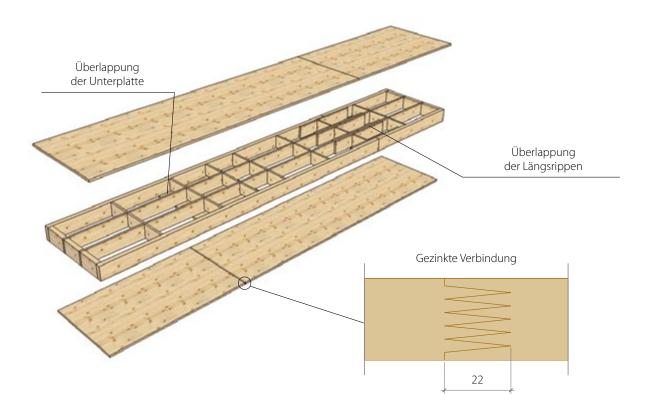
STANDARDBREITEN



NOVATOP ELEMENT STANDARDFORMATEN

Höhen: 160, 180, 200, 220, 240, 280, 300, 320, max. 400

Breiten: 690, 1030, 2090, 2450, max. 2.450


Längen: sind individuell wählbar, nach Projekt-Dokumentation. Standard 6 m max. 12 m

(Verlängerung durch Generalkeilzinkstoß mit Innenverstärkung).

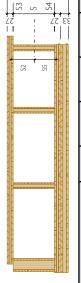
Großflächiges Format: max. 12.000 x 2.450 mm

ETA-Zertifizierung bis 12 m.

BEISPIEL DER ELEMENTVERLÄNGERUNG ÜBER 6 m

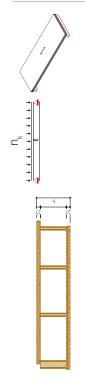
Querchnittswerte

an absence of T	٤		001	100	C	CCC		0,00	COC	000	0,00	CAC	000	COC	007
Elementyp	l Element		100	IgO	700	770	740	700	780	200	220	540	200	280	400
Aufbau								27 (9,	27 (9/9/9) - 27 (9/9/9)	(6/6)					
Eigengewicht Element	O Eigen	kN/m²	0,31	0,32	0,33	0,34	0,34	0,35	0,36	0,37	0,38	0,38²	68'0	0,40	0,41
Spannweite	д	mm	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000
Rippenhöhe	Рярре	mm	106	126	146	166	186	506	226	246	266	286	306	326	346
Bezugsbreite Berechnung	q	mm	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Raster	Ð	mm	340	340	340	340	340	340	340	340	340	340	340	340	340
Mittragende Breite oben	bef _{oben}	mm	963	963	963	963	963	963	963	963	963	963	963	963	963
Mittragende Breite unten	bef _{unten}	mm	963	963	963	963	6963	6963	6963	6963	963	963	963	696	963
Querschnittsfläche (über mittragende Breiten)	А	mm²	38423	39129	39835	40541	41247	41952	42658	43364	44070	44776	45482	46188	46894
Schwerpunkt des Querschnitts:	ZS _{oben}	mm	80	90	100	110	120	130	140	150	160	170	180	190	200
	ZS _{unten}	mm	80	06	100	110	120	130	140	150	160	170	180	190	200
	S2 (Plattenfuge Oben)	mm³	6,55E+05	7,41E+05	8,28E+05	9,15E+05	1,00E+06	1,09E+06	1,17E+06	1,26E+06	1,35E+06	1,43E+06	1,52E+06	1,61E+06	1,70E+06
	S3 (Leimfuge Steg Oben)	mm³	1,15E+06	1,33E+06	1,50E+06	1,67E+06	1,85E+06	2,02E+06	2,19E+06	2,37E+06	2,54E+06	2,71E+06	2,89E+06	3,06E+06	3,23E+06
Statische Momente	S4 (Leimfuge Steg Unten)	mm³	1,15E+06	1,33E+06	1,50E+06	1,67E+06	1,85E+06	2,02E+06	2,19E+06	2,37E+06	2,54E+06	2,71E+06	2,89E+06	3,06E+06	3,23E+06
	S5 (Plattenfuge Unten)	mm³	6,55E+05	7,41E+05	8,28E+05	9,15E+05	1,00E+06	1,09E+06	1,17E+06	1,26E+06	1,35E+06	1,43E+06	1,52E+06	1,61E+06	1,70E+06
	S (Schwerpunkt)	mm³	1,20E+06	1,40E+06	1,59E+06	1,79E+06	2,00E+06	2,21E+06	2,42E+06	2,63E+06	2,85E+06	3,07E+06	3,30E+06	3,53E+06	3,76E+06
Flächenträgheitsmoment des Querschnitts nach Elastizitätstheorie	1	mm4	1,60E+08	2,12E+08	2,72E+08	3,39E+08	4,15E+08	4,99E+08	5,92E+08	6,93E+08	8,03E+08	9,21E+08	1,05E+09	1,19E+09	1,33E+09
Widerstandsmoment des Querschnitts nach Elastizitätstheorie	Wyden	mm³	2,00E+06	2,35E+06	2,72E+06	3,09E+06	3,46E+06	3,84E+06	4,23E+06	4,62E+06	5,02E+06	5,42E+06	5,83E+06	6,24E+06	6,66E+06
Widerstandsmoment Wunten	W _{unten}	mm³	2,00E+06	2,35E+06	2,72E+06	3,09E+06	3,46E+06	3,84E+06	4,23E+06	4,62E+06	5,02E+06	5,42E+06	5,83E+06	6,24E+06	6,66E+06
Effektive Biegesteifigkeit Eleff für Durchbiegung	Eleff	Nmm²	1,75E+12	2,32E+12	2,96E+12	3,69E+12	4,50E+12	5,39E+12	6,37E+12	7,44E+12	8,59E+12	9,83E+12	1,12E+13	1,26E+13	1,41E+13



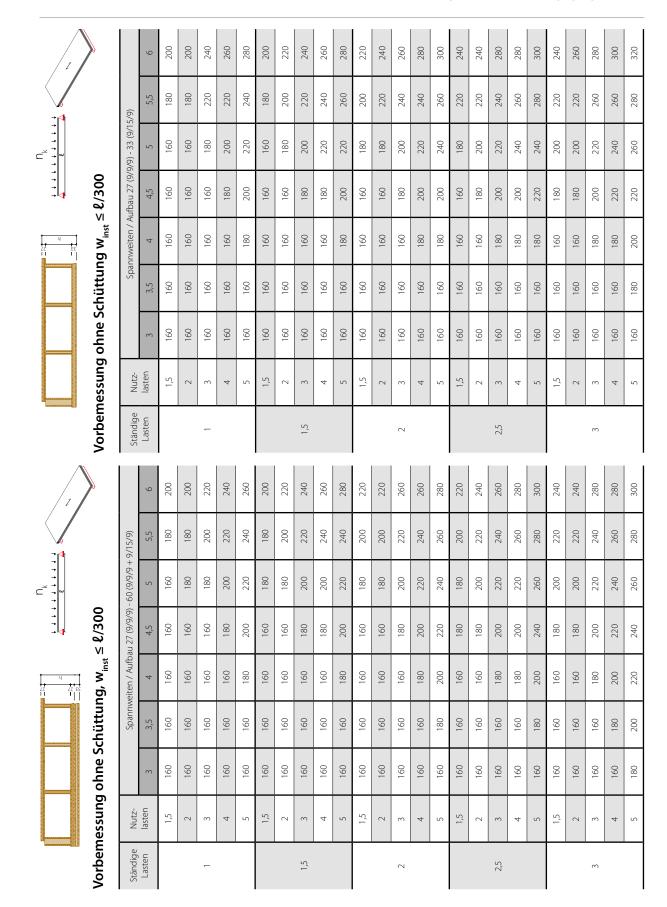
400		0,44	4000	340	1000	340	963	962	46654	198	202	1,68E+06	3,20E+06	3,21E+06	1,71E+06	3,72E+06	1,31E+09	6,59E+06	6,46E+06	1,38E+13
380		0,43	4000	320	1000	340	963	362	45948	188	192	1,59E+06	3,03E+06	3,04E+06	1,62E+06	3,48E+06	1,16E+09 1.	6,18E+06 6	6,05E+06 6	1,23E+13 1.
360		0,42	4000	300	1000	340	963	396	45243	178	182	1,50E+06	2,85E+06	2,86E+06	1,54E+06	3,26E+06	1,03E+09	5,77E+06	5,64E+06	1,09E+13
340		0,41	4000	280	1000	340	963	396	44537	168	172	1,42E+06	2,68E+06	2,69E+06	1,45E+06	3,03E+06	9,01E+08	5,36E+06	5,24E+06	9,63E+12
320		0,40	4000	260	1000	340	963	962	43831	158	162	1,33E+06	2,51E+06	2,52E+06	1,36E+06	2,81E+06	7,84E+08	4,96E+06	4,85E+06	8,41E+12
300	(6/51	0,40	4000	240	1000	340	963	962	43125	148	152	1,25E+06	2,33E+06	2,34E+06	1,28E+06	2,59E+06	6,76E+08	4,57E+06	4,45E+06	7,27E+12
280	27 (9/9/9) - 33 (9/15/9)	68'0	4000	220	1000	340	963	962	42419	138	142	1,16E+06	2,16E+06	2,17E+06	1,19E+06	2,38E+06	5,77E+08	4,18E+06	4,07E+06	6,22E+12
260	27 (9/	0,38	4000	200	1000	340	963	962	41713	128	132	1,07E+06	1,99E+06	2,00E+06	1,10E+06	2,17E+06	4,86E+08	3,79E+06	3,69E+06	5,26E+12
240		0,37	4000	180	1000	340	963	396	41007	118	122	9,86E+05	1,82E+06	1,82E+06	1,02E+06	1,96E+06	4,03E+08	3,41E+06	3,31E+06	4,38E+12
220		98'0	4000	160	1000	340	963	396	40301	108	112	8,99E+05	1,64E+06	1,65E+06	9,29E+05	1,76E+06	3,29E+08	3,04E+06	2,94E+06	3,58E+12
200		98'0	4000	140	1000	340	963	396	39595	86	102	8,13E+05	1,47E+06	1,48E+06	8,42E+05	1,56E+06	2,63E+08	2,67E+06	2,58E+06	2,87E+12
180		0,35	4000	120	1000	340	963	396	38890	88	92	7,26E+05	1,30E+06	1,30E+06	7,55E+05	1,36E+06	2,04E+08	2,31E+06	2,23E+06	2,24E+12
160		0,34	4000	100	1000	340	963	396	38184	78	82	6,40E+05	1,12E+06	1,13E+06	6,68E+05	1,17E+06	1,53E+08	1,96E+06	1,88E+06	1,69E+12
		kN/m²	mm	mm	mm	шш	mm	mm	mm²	ww	шш	mm³	mm³	mm³	mm³	mm³	mm⁴	mm³	mm³	Nmm²
h		9 _{Eigen}	Э	addis y	q	Ð	bef _{oben}	bef _{unten}	A	ZS,oben	ZS _{runten}	S2 (Plattenfuge Oben)	S3 (Leimfuge Steg Oben)	S4 (Leimfuge Steg Unten)	S5 (Plattenfuge Unten)	S (Schwerpunkt)	ı	Woben	Wunten	Eleff
Elementtyp	Aufbau	Eigengewicht Element	Spannweite	Rippenhöhe	Bezugsbreite Berechnung	Raster	Mittragende Breite oben	Mittragende Breite unten	Querschnittsfläche (über mittragende Breiten)	Schwerpunkt des Querschnitts:				Statische Momente			Flächenträgheitsmoment des Querschnitts nach Elastizitätstheorie	Widerstandsmoment des Querschnitts nach Elastizitätstheorie	Widerstandsmoment Wunten	Effektive Biegesteifigkeit Eleff für Durchbiegung

Querchnittswerte

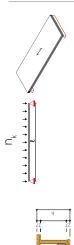


Querchnittswerte

Elementtyp	hElement		160	180	200	220	240	260	280	300	320	340	360	380	400
Aufbau								27 (9/9/9)	+ 6/6/6) 09 - (6/6/6) 27	H 9/15/9)					
Eigengewicht Element	О Бідеп	kN/m²	0,46	0,47	0,48	0,49	09'0	05'0	0,51	0,52	0,53	0,54	0,54	0,55	0,56
Spannweite	д	шш	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000
Rippenhöhe	^{addig} Y	шш	73	93	113	133	153	173	193	213	233	253	273	293	313
Bezugsbreite Berechnung	q	шш	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Raster	ə	ww	340	340	340	340	340	340	340	340	340	340	340	340	340
Mittragende Breite oben	bef _{oben}	шш	963	963	963	896	963	693	963	963	963	963	693	693	963
Mittragende Breite unten	het, natur	шш	962	962	962	796	396	362	962	962	962	962	396	962	962
Querschnittsfläche (über mittragende Breiten)	А	mm ²	54565	55271	55977	56683	57389	58095	58800	59506	60212	60918	61624	62330	63036
Schwerpunkt des Querschnitts:	Z5 _{oben}	ww	68	102	114	127	140	152	165	177	189	202	214	226	238
	ZS _{runten}	шш	71	78	98	93	100	108	115	123	131	138	146	154	162
	S2 (Plattenfuge Oben)	_s mm	7,32E+05	8,43E+05	9,53E+05	1,06E+06	1,17E+06	1,28E+06	1,39E+06	1,50E+06	1,60E+06	1,71E+06	1,82E+06	1,92E+06	2,03E+06
	S3 (Leimfuge Steg Oben)	mm³	1,31E+06	1,53E+06	1,75E+06	1,97E+06	2,19E+06	2,41E+06	2,62E+06	2,84E+06	3,05E+06	3,27E+06	3,48E+06	3,69E+06	3,90E+06
Statische Momente	S4 (Leimfuge Steg Unten)	mm³	1,37E+06	1,62E+06	1,87E+06	2,13E+06	2,38E+06	2,64E+06	2,90E+06	3,17E+06	3,43E+06	3,70E+06	3,97E+06	4,24E+06	4,51E+06
	S5 (Plattenfuge Unten)	mm³	1,24E+06	1,42E+06	1,61E+06	1,80E+06	2,00E+06	2,19E+06	2,39E+06	2,58E+06	2,78E+06	2,98E+06	3,18E+06	3,38E+06	3,59E+06
	S (Schwerpunkt)	_s mm	1,37E+06	1,63E+06	1,89E+06	2,15E+06	2,41E+06	2,68E+06	2,96E+06	3,24E+06	3,52E+06	3,80E+06	4,10E+06	4,39E+06	4,69E+06
Flächenträgheitsmoment des Querschnitts nach Elastizitätstheorie	1	mm⁴	1,69E+08	2,29E+08	2,99E+08	3,80E+08	4,71E+08	5,73E+08	6,86E+08	8,10E+08	9,45E+08	1,09E+09	1,25E+09	1,42E+09	1,60E+09
Widerstandsmoment des Querschnitts nach Elastizitätstheorie	Woben	mm³	1,90E+06	2,25E+06	2,62E+06	2,99E+06	3,37E+06	3,76E+06	4,16E+06	4,57E+06	4,99E+06	5,41E+06	5,84E+06	6,27E+06	6,71E+06
Widerstandsmoment Wunten	W _{unten}	mm³	2,38E+06	2,93E+06	3,50E+06	4,09E+06	4,70E+06	5,32E+06	5,95E+06	6,59E+06	7,24E+06	7,90E+06	8,56E+06	9,23E+06	9,91E+06
Effektive Biegesteifigkeit Eleff für Durchbiegung	Eleff	Nmm²	1,83E+12	2,48E+12	3,23E+12	4,10E+12	5,07E+12	6,15E+12	7,34E+12	8,64E+12	1,01E+13	1,16E+13	1,32E+13	1,50E+13	1,69E+13

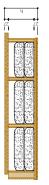


	11	400	-		-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-		,	-	-
	10,5	380	400			-	400	-			-	1	1		,	-	-	-	1		-	-		,	,	-
	10	360	380		,	-	380	400		_	-	400	-		,	-	-		_		-		,	,		-
	6,5	340	360	400		_	360	380		_		380	400	,			400	-	_		-	-				
	6	320	340	380	1	-	340	360	400	1	-	360	380	1	1	-	380	400	1	1	-	400	1	,	1	-
	8,5	300	320	360	380	-	320	340	380	400	-	340	360	400	,	-	360	360	-	-	-	380	380		-	-
	8	280	300	320	360	380	300	300	340	380	400	300	320	360	380	-	320	340	380	400	-	340	360	400	-	-
	7,5	260	260	300	340	360	260	280	320	340	360	280	300	340	360	380	300	320	360	380	400	320	340	360	380	400
(6/	7	240	240	280	300	320	240	260	300	320	340	260	280	300	320	340	280	300	320	340	360	300	300	340	360	380
9/6) - 27 (9/9	6,5	220	220	260	280	300	220	240	260	280	300	240	260	280	300	320	260	260	300	320	320	280	280	300	320	340
rfbau 27 (9/9	9	200	200	220	260	280	200	220	240	260	280	220	220	260	280	280	240	240	260	280	300	240	260	280	300	300
Spannweiten / Aufbau 27 (9/9/9) - 27 (9/9/9)	5,5	180	180	200	220	240	180	200	220	240	260	200	200	240	240	260	200	220	240	260	260	220	220	260	260	280
Span	5	160	160	180	200	220	160	180	200	220	220	180	180	200	220	240	180	200	220	220	240	200	200	220	240	240
	4,5	160	160	160	180	200	160	160	180	180	200	160	160	180	200	200	160	180	200	200	220	180	180	200	200	220
	4	160	160	160	160	160	160	160	160	160	180	160	160	160	160	180	160	160	160	180	180	160	160	180	180	200
	3,5	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	180
	3	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160
Nutz-	lasten	1,5	2	е	4	5	1,5	2	т	4	5	1,5	2	т	4	5	1,5	2	ĸ	4	5	1,5	2	е	4	5
ide	ne			<u> </u>																						


Vorbemessung ohne Schüttung, $w_{inst} \le \ell/300$

2,5

Ч	
1	


	10,5	400	ı		ī	,	î	1	ī	,	î	-	ī	,	ī	1	ī		î.	-	î	-	ī	-	T	1
	10	380	400	-	-	-	400	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	9,5	360	380		-	-	380	400	-	-	-	400	-	1	-	1	-		-	-	-	-	-	-	-	-
	6	340	360	400	1	1	360	380	-	-	-	380	400	1	1	1	400	1	-	1	1	1	-	1	1	T
	8,5	300	320	360	400	1	320	340	380	-	-	340	360	400	-	1	380	380	-	1	-	400	400	-	-	ı
	8	280	300	340	360	400	300	320	360	380	-	320	340	380	400	-	340	360	400	-	-	360	380	-	-	-
	7,5	260	280	320	340	360	280	300	340	360	380	300	320	340	360	400	320	320	360	380	400	340	340	380	400	-
(6	7	240	260	280	320	340	260	280	300	320	340	280	280	320	340	360	300	300	340	360	380	300	320	360	360	380
Spannweiten / Aufbau 27 (9/9/9) - 27 (9/9/9)	6,5	220	240	260	280	300	240	260	280	300	320	260	260	300	300	320	260	280	300	320	340	280	280	320	340	360
ufbau 27 (9/9	9	200	220	240	260	280	220	220	260	260	280	220	240	260	280	300	240	240	280	300	300	260	260	300	300	320
nnweiten / A	5,5	180	200	220	240	260	200	200	220	240	260	200	220	240	260	260	220	220	260	260	280	240	240	260	280	280
Spa	5	160	180	200	200	220	180	180	200	220	240	180	200	220	220	240	200	200	220	240	240	200	200	240	240	260
	4,5	160	160	180	180	200	160	160	180	200	200	160	180	180	200	220	180	180	200	200	220	180	180	200	220	220
	4	160	160	160	160	180	160	160	160	160	180	160	160	160	180	180	160	160	180	180	200	160	160	180	180	200
	3,5	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	180	160	160	160	160	180
	3	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160
Nutz-	lasten	1,5	2	e	4	5	1,5	2	3	4	5	1,5	2	е	4	5	1,5	2	3	4	5	1,5	2	3	4	5
Ständige	Lasten			-					1,5					2					2,5					ĸ		

1			9	200	220	240	260	280	220	220	260	280	300	240	240	260	280	300	240	260	280	300	300	260	260	300	300	320
√		(6/9	5,5	180	200	220	240	260	200	200	240	240	260	200	220	240	260	260	220	220	260	260	280	240	240	260	280	280
	< 2/300	/9) - 27 (9/1	5	160	180	200	220	220	180	180	200	220	240	180	200	220	220	240	200	200	220	240	240	200	220	240	240	260
→ → →	n², W _{inst}	Spannweiten / Aufbau 27 (9/9/9) - 27 (9/15/9)	4,5	160	160	180	180	200	160	160	180	200	200	160	180	200	200	220	180	180	200	220	220	180	180	200	220	220
4 22 EE	40 kg/n	nweiten / Au	4	160	160	160	160	180	160	160	160	180	180	160	160	160	180	180	160	160	180	180	200	160	160	180	200	200
	üttung	Spar	3,5	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	180	160	160	160	160	180
	mit Sch		8	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160
	essung	Nutz-	lasten	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160
	Vorbemessung mit Schüttung 40 kg/m², $w_{\rm inst} \le \ell/300$	Ständige	Lasten			_					1,5					2					2,5					е		
			9	200	220	240	260	280	220	220	240	260	280	220	240	260	280	280	240	240	280	280	300	260	260	280	300	320
→		9/15/9)	5'2	180	200	220	240	240	200	200	220	240	260	200	220	240	240	260	220	220	240	260	280	220	240	260	260	300
→ ↑ → → → ≈ - → ≈	< e /300	(6) - (6) (6/6) - (6)	5	160	180	200	200	220	180	180	200	220	240	180	200	220	220	240	200	200	220	240	260	200	200	240	240	280
→ → →	n², W _{inst}	u 27 (9/9/9) -	4,5	160	160	180	180	200	160	160	180	200	220	160	180	200	200	220	180	180	200	220	240	180	200	200	220	240
Ψ Δζ	40 kg/n	Spannweiten / Aufbau 27 (9/9/	4	160	160	160	160	180	160	160	160	180	200	160	160	180	180	200	160	160	180	200	220	160	180	180	200	220
	üttung	Spannwe	3,5	160	160	160	160	160	160	160	160	160	180	160	160	160	160	180	160	160	160	180	200	160	160	160	180	200
	mit Sch		е	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	180	160	160	160	160	180
	essung	Nutz-	lasten	1,5	2	3	4	5	1,5	2	3	4	5	1,5	2	е	4	5	1,5	2	3	4	5	1,5	2	3	4	5
141	Vorbemessung mit Schüttung 40 kg/m², w _{inst}	Ständige	Lasten			_					1,5					2					2,5					e		

	10	400	1		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	1
	9,5	380	400		-	-	400	-	-	-	-	1	-		-	-	-	,	-	-	-	-	-	-	-	-
	6	340	360		-	-	360	380	-	-	-	400	400	1	-	-	-	,	1	-	-	-	-	-	-	-
	8,5	320	340	380	-	-	340	360	400	-	-	360	380	-	-	-	380	400	-	-	-	-	-	-	-	-
	8	300	320	360	380	400	320	340	380	400	-	340	360	400	-	-	360	360	-	-	-	380	380	-	-	-
	7,5	280	300	320	360	380	300	300	340	360	380	320	320	360	380	400	340	340	380	400	,	360	360	400	-	1
(7	260	280	300	320	340	280	280	320	340	360	280	300	340	360	360	300	320	340	360	380	320	320	360	380	400
9) - 27 (9/9/9	6,5	240	240	280	300	320	240	260	280	300	320	260	280	300	320	340	280	280	320	340	340	300	300	340	340	360
ufbau 27 (9/9,	9	220	220	240	260	280	220	240	260	280	300	240	240	280	300	300	260	260	280	300	320	260	280	300	320	320
Spannweiten / Aufbau 27 (9/9/9) - 27 (9/9/9)	5,5	200	200	220	240	260	200	220	240	260	260	220	220	240	260	280	220	240	260	280	280	240	240	260	280	300
Spē	5	180	180	200	220	220	180	200	220	220	240	200	200	220	240	240	200	200	240	240	260	220	220	240	260	260
	4,5	160	160	180	200	200	160	160	180	200	200	180	180	200	200	220	180	180	200	220	220	200	200	220	220	240
	4	160	160	160	160	180	160	160	160	180	180	160	160	180	180	180	160	160	180	180	200	160	160	180	200	200
	3,5	160	160	160	160	160	160	160	160	160	160	160	160	160	160	180	160	160	160	160	180	160	160	160	160	180
	3	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160
Nutz-	lasten	1,5	2	3	4	5	1,5	2	3	4	5	1,5	2	ĸ	4	5	1,5	2	33	4	5	1,5	2	3	4	5
Ständige	Lasten			-					1,5					2					2,5					т		

Vorbemessung mit Schüttung 80 kg/m², $w_{inst} \le \ell/300$

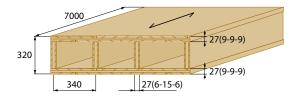
	<u> </u>		9	220	220	260	260	280	220	240	260	280	300	240	240	280	300	300	260	260	300	300	320	260	280	300	320	320
		(6	5,5	200	200	220	240	260	200	220	240	260	260	220	220	260	260	280	240	240	260	280	280	240	240	280	280	300
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	< e /300	Spannweiten / Aufbau 27 (9/9/9) + 33 (9/15/9)	5	180	180	200	220	240	180	200	220	220	240	200	200	220	240	240	200	220	240	240	260	220	220	240	260	260
- - - -	Vorbemessung mit Schüttung 80 kg/m², $w_{inst} \le \ell/300$	ufbau 27 (9/9/	4,5	160	160	180	200	200	160	180	200	200	220	180	180	200	200	220	180	180	200	220	220	700	200	220	220	240
ν 22 εε 33 853	y 80 kg/ı	nnweiten / Aı	4	160	160	160	180	180	160	160	160	180	180	160	160	180	180	200	160	160	180	200	200	160	180	180	200	220
	hüttung	Spai	3,5	160	160	160	160	160	160	160	160	160	160	160	160	160	160	180	160	160	160	160	180	160	160	160	180	180
	g mit Sc		3	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160
	messun	Nutz-	lasten	1,5	2	е	4	5	1,5	2	ю	4	5	1,5	2	Ω	4	5	1,5	2	Ω	4	5	1,5	2	ε	4	2
	Vorber	Ständige	Lasten			-					1,5					2					2,5					9		
			9	220	220	240	260	280	220	240	260	280	280	240	240	260	280	300	240	260	280	300	320	260	260	300	300	320
→ ↑		. 9/15/9)	5.5	200	200	220	240	260	200	220	240	240	260	220	220	240	260	280	220	220	260	260	300	240	240	260	280	300
* * * * * * * * * * * * * * * * * * *	Vorbemessung mit Schüttung 80 kg/m², $w_{inst} \le \ell/300$	- 60 (9/9/9 + 9/15/9)	10	180	180	200	220	240	180	200	220	220	240	200	200	220	240	260	200	200	220	240	260	220	220	240	260	280
- - - - -	m², w _{inst}	Spannweiten / Aufbau 27 (9/9/9)	4.5	160	160	180	200	220	160	180	180	200	220	180	180	200	220	240	180	180	200	220	240	200	200	220	240	260
	y 80 kg/	weiten / Aufb	4	160	160	160	180	200	160	160	160	180	200	160	160	180	200	220	160	180	180	200	220	180	180	200	220	240
4 22 22 EE	hüttung	Spanny	3.5	160	160	160	160	180	160	160	160	160	180	160	160	160	180	200	160	160	160	180	200	160	160	180	200	220
	y mit Scl		m	160	160	160	160	160	160	160	160	160	160	160	160	160	160	180	160	160	160	160	180	160	160	160	160	180
	nessung	-411N	lasten	1,5	. 2	ю	4	5	1,5	2	m	4	5	1,5	2	м	4	5	1,5	2	т	4	52	1,5	2	е	4	5
	Vorben	Ständige	Lasten			-					1,5					2					2,5					е		

		,		9	200	240	260	320	360	240	260	280	340	380	260	280	320	360	ı	280	320	340	380	ī	320	340	360	400	1
			(6/	5,5	200	220	240	300	340	220	240	260	320	360	240	260	300	340	380	260	300	320	360	400	280	320	340	380	
13			9/9) - 27 (9/9	5	180	200	220	280	320	200	220	240	300	340	220	240	260	320	360	240	260	280	340	380	260	300	300	340	400
—————————————————————————————————————		< 2 /300	Spannweiten / Aufbau 27 (9/9/9) - 27 (9/9/9)	4,5	160	180	220	260	280	180	200	220	260	300	200	220	240	280	320	220	240	260	300	340	240	260	280	320	360
-		ig, W _{inst}	ınnweiten / A	4	160	160	200	220	260	160	180	200	240	280	180	200	220	260	300	200	220	240	280	300	220	240	260	300	320
22	ч .	chüttun 	Spa	3,5	160	160	180	200	240	160	160	180	220	240	160	180	200	240	260	180	200	220	240	280	200	220	220	260	300
	_	Vorbemessung ohne Schüttung, $w_{inst} \le \ell/300$		3	160	160	160	180	200	160	160	160	200	220	160	160	180	200	240	160	180	200	220	240	180	200	200	220	260
		essung	Nutz-	lasten	1,5	2	3	4	5	1,5	2	3	4	5	1,5	2	3	4	5	1,5	2	3	4	5	1,5	2	3	4	5
	-	Vorber	Ständige	Lasten			-					1,5					2					2,5					8		
//				9	220	260	280	340	380	260	280	300	360	400	280	300	340	380	-	300	340	360	400	1	340	360	380	r	ı
→	/ ^s		(6/	5'2	220	240	260	320	360	240	260	280	340	380	260	280	300	360	400	280	320	320	380	-	300	340	340	400	
13 + + + + + + + + + + + + + + + + + + +		≤ ℓ/300	(9/9/9) - 27 (9/9/9)	5	200	220	240	280	340	220	240	260	300	340	240	260	280	320	360	260	280	300	340	380	280	300	320	360	400
+ + + + +	,	n ² , W _{inst}	ufbau 27 (9/	4,5	180	200	220	260	300	200	220	240	280	320	220	240	260	300	340	240	260	280	320	360	260	280	300	340	380
Ч 22 11		40 kg/r	Spannweiten / Aufbau 27	4	160	180	200	240	280	180	200	220	260	300	200	220	240	280	300	220	240	260	280	320	240	260	260	300	340
		üttung	Spa	3,5	160	160	180	220	240	160	180	200	220	260	180	200	220	240	280	200	220	220	260	280	220	240	240	280	300
		mit Sch		3	160	160	160	200	220	160	160	180	200	220	160	180	180	220	240	180	180	200	220	260	180	200	220	240	260
		Vorbemessung mit Schüttung 40 kg/m ² , w _{inst} $\leq \ell/300$	Nutz-	lasten	1,5	2	3	4	5	1,5	2	3	4	5	1,5	2	е	4	5	1,5	2	3	4	5	1,5	2	3	4	5
	-	Vorben	Ständige	Lasten			-					1,5					2					2,5					3		

www.novatop-system.com

	·		9	240	280	300	360	400	280	300	320	380	,	300	320	340	400	,	320	360	380	1	,	360	380	400	1	,
715		(6/	5,5	240	260	280	320	380	260	280	300	340	400	280	300	320	360	-	300	320	340	380	-	320	360	360	400	
13 14 14 14 15	< e /300	Spannweiten / Aufbau 27 (9/9/9) - 27 (9/9/9)	5	220	240	260	300	340	240	760	280	320	360	760	280	300	340	380	780	300	320	360	400	300	320	340	380	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	n², w _{inst}	rufbau 27 (9/	4,5	200	220	240	280	320	220	240	260	300	340	240	260	280	320	360	260	280	300	320	360	280	300	300	340	380
2Z ZZ	80 kg/m², w _{inst}	ınnweiten / A	4	180	200	220	260	280	200	220	240	260	300	220	240	240	280	320	240	260	260	300	340	260	280	280	320	340
	üttung	Spa	3,5	160	180	200	220	260	180	200	200	240	280	200	220	220	260	280	200	220	240	260	300	220	240	260	280	320
	mit Sch		3	160	160	180	200	220	160	180	180	220	240	180	180	200	220	260	180	200	200	240	260	200	220	220	240	280
	essung	Nutz-	lasten	1,5	2	3	4	5	1,5	2	8	4	5	1,5	2	3	4	5	1,5	2	3	4	5	1,5	2	3	4	5
	Vorbemessung mit Schüttung	Ständige	Lasten			-					1,5					2					2,5					3		

1 Allgemeines


Im Folgenden wird an einem NOVATOP-Kastenelement (Plattenbeanspruchung und Faserrichtung der Decklagen in Spannrichtung) der Firma AGROP NOVA AG beispielhaft die ausführliche Berechnung und Nachweisführung nach DIN EN 1995-1-1/NA/A1 (2012-02) für Deutschland gezeigt. Es werden die Nachweise der Tragfähigkeit und der Gebrauchstauglichkeit und der Gebrauchstauglich werden die Nachweise der Tragfähigkeit und der Gebrauchstauglich werden der Gebrauchstauf dergeführt.

System und Belastung

Materiall:

NOVATOP-Kastenelement Typ A1 $h = 320 \, mm$ (Aufbau: 9/9/9 - 6/15/6 - 9/9/9, $t_{Steg} = 27 \text{ mm}$) Spannweite Einfeldträger

 $\ell = 7000 \text{ mm}$ Bezugsbreite für die Berechnung $b = 340 \, \text{mm}$ Abstand der Rippen in Längsrichtung e = 340 mm

Massivholzplatte	9/9/9	6/15/6
Elastizitätsmodul Längs E _{m,0} [N/mm²]	7800	5300
Schubmodul G [N/mm²]	600	600
Char. Festigkeitswerte in N/mm²		
Biegefestigkeit f _{m,0,k} [N/mm ²]	20,3	13,9
Zugfestigkeit f _{t,0,k} [N/mm ²]	11,5	9,3
Druckfestigkeit f _{c,0,k} [N/mm ²]	20,3	13,9
Schubfestigkeit f _{v,k} [N/mm²]	3,0	3,0
Schubfestigkeit der Leimfuge f _{v,glue,k} [N/mm²]	4,0	4,0
Schubmodul G [N/mm²]	600	600

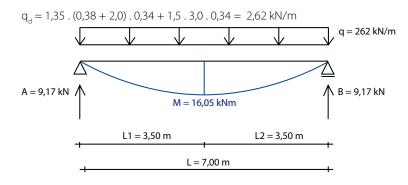
Statische Werte aus Tabelle:

 $I_{eff} = 3,01 \times 10^8 \, \text{mm}^4$ Trägheitsmoment Vergleichs-E-Modul $E_{x}^{(1)} = 11,0 \times 10^{3} \text{ N/mm}^{2}$ $\dot{El}_{eff} = 3,31 \times 10^{12} \, \text{Nmm}^2$ Effektive Biegesteifigkeit Schwerpunktabstand ab Unterkante $z_{c} = 160 \, \text{mm}$ Statisches Moment Schwerpunkt $S_1 = 1,07 \times 10^6 \text{ mm}^3$

Statisches Moment Leimfuge $S_{3} = 9,54 \times 10^{5} \text{ mm}^{3}$ $k_{def}^{-} = 0,60$

Verformungsbeiwert

2.2 Belastung:


Nutzungsklasse Eigenlast Element: $g_1 = 0.38 \text{ kN/m}^2$ Ständige Lasten: $g_{k} = 2,00 \text{ kN/m}^{2}$

Nutzlast: $q_k = 3,00 \text{ kN/m}^2$; Kategorie C

 $k_{mod} = 0,90$ $\Psi_2 = 0,60$ $\dot{\rightarrow}$

2.2.1 Nachweise der Tragfähigkeit

maximales Moment

$$M_d = \frac{q_d \cdot \ell^2}{8} = \frac{2,62 \cdot 7,00^2}{8} = 16,05 \text{ kNm}$$

maximale Querkraft

$$V_d = \frac{q_d \cdot \ell}{2} = \frac{2,62 \cdot 7,00}{2} = 9,17 \text{ kN}$$

2.2.2 Nachweise der Gebrauchstauglichkeit

Zusammenstellung der Beanspruchung

$$q_{k,g} = (0.38 + 2.0) \cdot 0.34 = 0.809 \text{ kN/m}$$

$$q_{k,q} = 3.0 \cdot 0.34 = 1.02 \text{ kN/m}$$

Tragfähigkeitsnachweise

3.1 Nachweis der Biegerandspannung

$$O_{m,d} = \frac{M_d}{l_{elf}} \cdot \frac{E_{m,0}}{E_v} \cdot z_s = \frac{16.1 \cdot 10^6}{3.01 \cdot 10^8} \cdot \frac{7800}{11000} \cdot 160 = 6.06 \text{ N/mm}^2$$

$$f_{m,d} = \frac{f_{m,0} \cdot k_{mod}}{\gamma_m} = \frac{20.3 \cdot 0.9}{1.3} = 14.1 \text{ N/mm}^2$$

$$\frac{O_{m,d}}{f_{m,d}} = \frac{6,06}{14,1} = 0,43 < 1,0$$

3.2 Nachweis der Schwerpunktspannung unterste Lage

Abstand z. Schwerpunkt Gesamt zum Schwerpunkt unterste Lage:

$$z_i = z_s - \frac{9+9+9}{2} = 146,5 \text{ mm}$$

$$O_{t,d} = -\frac{M_d}{I_{elf}} \cdot \frac{E_{m,0}}{E_v} \cdot z_i = -\frac{16.1 \cdot 10^6}{3.01 \cdot 10^8} \cdot \frac{7800}{11000} \cdot 146.5 = 5.56 \text{ N/mm}^2$$

$$f_{t,d} = \frac{f_{t,0} \cdot k_{mod}}{\gamma_m} = \frac{11.5 \cdot 0.9}{1.3} = 7.96 \text{ N/mm}^2$$

$$\frac{O_{t,d}}{f_{t,d}} = \frac{5.56}{7.96} = 0.70 < 1.0$$

3.3 Schubspannungsnachweise

3.3.1 Schubspannung im Schwerpunkt

$$T_{v,d} = \frac{V_d \cdot S_1}{I_{elf} \cdot t} = \frac{9,17 \cdot 10^3 \cdot 1,07 \cdot 10^6}{3,01 \cdot 10^8 \cdot 27} = 1,21 \text{ N/mm}^2$$

$$f_{t,d} = \frac{3.0,9}{1.3} = 2,08 \text{ N/mm}^2$$

$$\frac{T_{v,d}}{f_{v,d}} = \frac{1,21}{2,08} = 0,58 < 1,0$$

3.3.2 Schubspannung in der Platte

Shear Failure Mode 1 nach ETA-11/0310

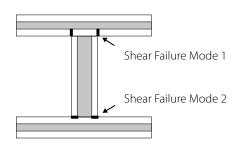
Es wird im Flansch an der inneren Decklage im Klebebereich des Steges Schubversagen des Holzes in Breite des Steges angenommen.

$$T_{v,1,d} = \frac{V_d \cdot S_2}{I_{eff} \cdot t} = \frac{9,17 \cdot 10^3 \cdot 9,54 \cdot 10^5}{3,01 \cdot 10^8 \cdot 27} = 1,08 \text{ N/mm}^2$$

$$f_{v,k} = \frac{3.0,9}{1,3} = 2,08 \text{ N/mm}^2$$

$$\frac{T_{v,1,d}}{f_{v,k}} = \frac{1,08}{2,08} = 0,52 < 1,0$$

3.3.3 Schubspannung in der Leimfuge


Shear Failure Mode 2 nach ETA-11/0310

Es wird nur die Klebefläche t_{netto} der faserparallelen Lagen angesetzt.

$$T_{v,2,d} = \frac{V_d \cdot S_2}{I_{eff} \cdot t_{netto}} = \frac{9,17 \cdot 10^3 \cdot 9,54 \cdot 10^5}{3,01 \cdot 10^8 \cdot (2 \cdot 6)} = 2,42 \text{ N/mm}^2$$

$$f_{v,d} = \frac{4.0,9}{1,3} = 2,77 \text{ N/mm}^2$$

$$\frac{T_{v,2,d}}{f_{v,d}} = \frac{2,42}{2,77} = 0,88 < 1,0$$

4 Nachweis der Gebrauchstauglichkeit nach DIN EN 1995-1-1

4.1 Elastische Anfangsdurchbiegung (charakteristische Kombination)

Anteil aus Biegung:

$$w_{b,g,inst} = \frac{5}{384} \cdot \frac{q_{k,g} \cdot \ell^4}{EI_{eff}} = \frac{5}{384} \cdot \frac{0,809 \cdot 7000^4}{3,31 \cdot 10^{12}} = 7,64 \text{ mm}$$

$$W_{b,q,inst} = \frac{5}{384} \cdot \frac{q_{k,q} \cdot \ell^4}{EI_{eff}} = \frac{5}{384} \cdot \frac{1,02.7000^4}{3,31.10^{12}} = 9,64 \text{ mm}$$

Anteil aus Schubverformung der Stege:

$$w_{v,g,inst} = \frac{1}{8} \cdot \frac{q_{k,g} \cdot \ell^2}{G.A} = \frac{1}{8} \cdot \frac{0,809 \cdot 7000^2}{600. \, (266.27)} = 1,15 \; mm$$

$$w_{v,q,inst} = \frac{1}{8} \cdot \frac{q_{k,q} \cdot \ell^2}{G.A} = \frac{1}{8} \cdot \frac{1,02 \cdot 7000^2}{600. \, (266.27)} = 1,45 \; mm$$

Anfangsdurchbiegung infolge ständiger Lasten:

$$W_{g,inst} = W_{b,g,inst} + W_{v,g,inst} = 7,64 + 1,15 = 8,79 \text{ mm}$$

Anfangsdurchbiegung infolge veränderlicher Lasten:

$$W_{q,inst} = W_{b,q,inst} + W_{v,q,inst} = 9,64 + 1,45 = 11,09 \text{ mm}$$

Elastische Anfangsdurchbiegung (charakteristische Kombination):

$$W_{inst} = W_{g,inst} + W_{q,inst} = 8,79 + 11,09 = 19,9 \text{ mm}$$

4.2 Enddurchbiegung

$$W_{fin} = W_{g,inst}$$
. $(1 + k_{def}) + W_{g,inst}$. $(1 + \Psi_2 + k_{def})$

$$W_{6n} = 8.79 \cdot (1 + 0.6) + 11.09 \cdot (1 + 0.6 \times 0.6) = 29.1 \text{ mm}$$

4.3 Netto-Enddurchbiegung (quasi-ständige Kombination)

$$W_{\text{net,fin}} = W_{\text{g,inst}}$$
. $(1 + k_{\text{def}}) + W_{\text{q,inst}}$. $(1 + k_{\text{def}})$. Ψ_2

$$W_{net.fin} = 8,79. (1 + 0,6) + 11,09 . (1 + 0,6) . 0,6 = 24,7 mm$$

4.4 Überprüfung der empfohlenen Grenzwerte

4.4.1 Elastische Anfangsdurchbiegung

$$W_{inst} = 19.9 \text{ mm} < \frac{\ell}{300} = \frac{7000}{300} = 23.3 \text{ mm}$$
 $(\eta = 0.85)$

4.4.2 Enddurchbiegung

$$w_{fin} = 29,1 \text{ mm} < \frac{\ell}{150} = \frac{7000}{150} = 46,7 \text{ mm}$$
 $(\eta = 0,62)$

4.4.3 Netto-Enddurchbiegung

$$w_{\text{net,fin}} = 24.7 \text{ mm} < \frac{\ell}{250} = \frac{7000}{250} = 28.0 \text{ mm}$$
 (n = 0.88)

Vergleich mit Stützweite 7,50 m

Wählt man für das gleiche Element mit gleicher Belastung eine Stützweite von 7,50 m ergibt sich: Anteil aus Biegung:

$$w_{b,g,inst} = \frac{5}{384} \cdot \frac{q_{k,g} \cdot \ell^4}{EI_{eff}} = \frac{5}{384} \cdot \frac{0,809.7500^4}{3,31.10^{12}} = 10,1 \text{ mm}$$

$$w_{b,q,inst} = \frac{5}{384} \cdot \frac{q_{k,q} \cdot \ell^4}{EI_{eff}} = \frac{5}{384} \cdot \frac{1,02.7500^4}{3,31.10^{12}} = 12,7 \text{ mm}$$

Anteil aus Schubverformung der Stege:

$$w_{v,g,inst} = \frac{1}{-8} \cdot \frac{q_{k,g} \cdot \ell^2}{G \cdot A} = \frac{1}{-8} \cdot \frac{0,809 \cdot 7500^2}{600 \cdot (266 \cdot 27)} = 1,32 \text{ mm}$$

$$w_{v,q,inst} = \frac{1}{8} \cdot \frac{q_{k,g} \cdot \ell^2}{G \cdot A} = \frac{1}{8} \cdot \frac{1,02 \cdot 7500^2}{600. (266 \cdot 27)} = 1,66 \text{ mm}$$

$$W_{inst} = 10.1 + 12.7 + 1.32 + 1.66 = 25.6 \text{ mm}$$

$$W_{inst} = 25,6 \text{ mm} > \frac{\ell}{300} = \frac{7500}{300} = 25,0 \text{ mm}$$

$$W_{net \, fin} = (10.1 + 1.32) \cdot (1 + 0.6) + (12.7 + 1.66) \cdot (1 + 0.6) \cdot 0.6 = 32.1 \text{ mm}$$

$$w_{net,fin} = 32,1 \text{ mm} > \frac{\ell}{250} = \frac{7500}{250} = 30,0 \text{ mm}$$

→ Das Element ist nicht ausreichend. In der Tabelle wird es nicht mehr aufgeführt.

Schwingungsuntersuchung für die NOVATOP-Elemente nach DIN EN 1995-1-1 (Eurocode 5) bzw. Erläuterungen zu DIN 1052:2004-08

Frequenzkriterium

Nach Eurocode 5 (7.3.3) ist für Wohnungsdecken zu untersuchen, ob die Eigenfrequenz $f_1 \le 8$ Hz oder $f_1 > 8$ Hz beträgt. Berechnung der Eigenfrequenz für vierseitig gelagerte Decken unter Berücksichtigung der Durchlaufwirkung:

$$f_0 = k_f \cdot \frac{\pi}{2 \cdot \ell^2} \cdot \sqrt{\frac{EI_{\ell}}{m}}$$

mit:

f₀ Eigenfrequenz ohne Berücksichtigung der Querverteilung der Lasten

k, Beiwert zur Berücksichtigung der Durchlaufwirkung

l Spannweite des Deckenfeldes in m

El, Effektive Biegesteifigkeit in Spannrichtung (je Meter) in Nm²/m

m Deckenmasse in kg/m2 unter quasi-ständiger Einwirkung ($g + \psi_2$, p)

Tabelle 0-1 – Beiwert kf zur Berücksichtigung der Durchlaufwirkung am Zwei-feldträger nach (Mohr 2001)

ℓ ₁ /ℓ	1,0	0,9	0,8	0,7	0,6	0,5	0,4	0,3	0,2	0,1	0
k_f	1,00	1,09	1,15	1,20	1,24	1,27	1,30	1,33	1,38	1,42	1,56

Berücksichtigung der Querverteilung der Lasten:

$$\begin{aligned} \boldsymbol{f}_1 &= \boldsymbol{f}_0 \cdot \sqrt{\ \boldsymbol{\ell} + \frac{\boldsymbol{\ell}}{\alpha^4}} \end{aligned} \qquad \qquad \boldsymbol{\alpha} = \frac{\boldsymbol{b}}{\boldsymbol{\ell}} \cdot \sqrt[4]{\frac{E\boldsymbol{I}_{\boldsymbol{\ell}}}{E\boldsymbol{I}_{\boldsymbol{b}}}} \end{aligned}$$

f, Eigenfrequenz mit Berücksichtigung der Querverteilung der Lasten

α Beiwert zur Berücksichtigung der Quersteifigkeit

b Breite des Deckenfeldes in m

 El_b Effektive Biegesteifigkeit in Querrichtung (Breite) je Meter in Nm²/m, $EI_b > EI_b$

Nach Hamm, Richter (2009) können für Brettstapeldecken die folgenden Querbie-gesteifigkeiten angesetzt werden:

Brettstapel, genagelt oder gedübelt (Näherungsweise) $EI_b = 0,0005 EI_{\ell}$ Brettstapel, geklebt $EI_b = 0,3 EI_{\ell}$

Da sich in der Literatur kaum Hinweise auf die anzusetzenden Querbiegesteifigkei-ten finden, wird vorgeschlagen auf der sicheren Seite liegend die Querbiegesteif-igkeit $\mathrm{EI}_{\mathrm{b}} = 0,0005~\mathrm{EI}_{\mathrm{d}}$ zu verwenden.

Wenn die Eigenfrequenz $f_1 > 8$ Hz beträgt, sollten weitere Anforderungen erfüllt sein (Weiter mit Punkt 2 und 3). Die Untersuchung der weiteren Anforderungen ist nach Eurocode 5 dargestellt. Wenn die Eigenfrequenz $f_1 \le 8$ Hz beträgt, sollte eine besondere Untersuchung durchgeführt werden (Weiter mit Punkt 4 und 5). Die besondere Untersuchung er-folgt nach den Erläuterungen zu DIN 1052:2004, da in Eurocode 5 keine Vorge-hensweise erläutert ist.

2 Durchbiegung infolge Einzellast F = 1kN

$$\frac{W}{f} \le \alpha \quad mm/kN$$

mit

w größte vertikale Anfangsdurchbiegung infolge einer konzentrierten, vertikalen, statischen Einzellast F (1kN), an beliebiger Stelle wirkend und unter der Berücksichtigung der Lastverteilung ermittelt

α Grenzwert nach Bild 1

Für einen Einfeldträger bzw. eine Einfeldplatte unter Einzellast ist

$$W = \frac{\ell}{48} \frac{F \cdot \ell^3}{EI_{\ell} \cdot b_{E}}$$

$$\frac{\ell}{48} \ \frac{F \cdot \ell^3}{EI_\ell \cdot b_F} \qquad \qquad b_{_F} = \ \frac{\ell}{1,1} \cdot \sqrt[4]{\frac{EI_\ell}{EI_b}} = \frac{b}{1,1 \cdot \alpha}$$

Mitwirkende Plattenbreite für die Einzellast $b_{\rm F}$

Der empfohlene Bereich der Grenzwerte zwischen a und b sowie deren Zusammenhang ist in Bild 1 gezeigt. Niedrigere Werte für a (Richtung "1") bedeuten besseres Verhalten der Decke, höhere Werte für a (Richtung "2") bedeuten schlechteres Verhalten der Decke. Für höhere Anforderungen sollten die Grenzwerte im Bereich 1 (α≤1) eingehalten werden.

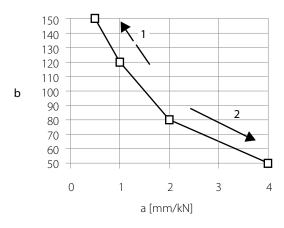


Bild 1: Grenzwerte nach Eurocode 5

Geschwindigkeit infolge Impuls I = 1Ns (bis 40 Hz)

 $v \le b^{(fl.\zeta-1)}$

mit:

- Einheitsimpulsgeschwindigkeitsreaktion in m/s
- Grenzwert nach Bild 1 (Aus a £1 folgt b 3120)
- modaler Dämpfungsgrad (Tabelle 0-2)

Tabelle 0-2 – Dämpfungswerte (nach Erläuterungen zu DIN 1052:2004 bzw. SIA 265)

Deckenaufbau	ζ
Decken ohne schwimmenden Estrich	0,01
Decken aus verleimten Brettstapel- Elementen mit schwimmendem Estrich	0,02
Holzbalkendecken und mechanisch verbundene Brettstapeldecken mit schwimmendem Estrich	0,03

Für die NOVATOP-Elemente liegen keine Erfahrungswerte hinsichtlich der Dämpfungswerte vor. Auf der sicheren Seite liegend kann mit $\zeta = 0.01$ gerechnet werden.

Es ist:

$$\mathbf{v} = \frac{4 \cdot (0.4 + 0.6 \cdot \mathbf{n}_{40})}{\mathbf{m} \cdot \mathbf{b} \cdot \ell + 200} \qquad \mathbf{a} \qquad \mathbf{n}_{40} = \left\{ \left(\left(\frac{40}{\mathbf{f}_1} \right)^2 - 1 \right) \cdot \left(\frac{\mathbf{b}}{\ell} \right)^4 \frac{\mathbf{EI}_{\ell}}{\mathbf{EI}_{\mathbf{b}}} \right\}^{0.25}$$

mit:

- m Deckenmasse in kg/m² unter quasi-ständiger Einwirkung (g + ψ_2 , p)
- b Breite des Deckenfeldes in m
- l Länge des Deckenfeldes in m
- n ₄₀ Anzahl der Schwingungen 1. Ordnung mit einer Resonanzfrequenz bis zu 40 Hz

4 Besondere Untersuchung Geschwindigkeit infolge Fersenauftritt I = 55 Ns, t = 0,05 s

$$v \le 6.b^{(f1.\zeta-1)}$$

Der Fersenauftritt wird durch einen Impuls mit I = 55 Ns und einer Dauer von etwa 0,05 s beschrieben. Über die Auswertung von Messungen kann der Zusammenhang für die Anfangsgeschwindigkeit v hergeleitet werden.

$$_{V}\cong\ \frac{950\ .\ \alpha}{f_{_{0}}\ .\ m\ .\ b\ .\ \ell\ .\ \gamma}$$

Die Formelzeichen entsprechen den bisher verwendeten.

5 Besondere Untersuchung Beschleunigung, Resonanzuntersuchung

$$a = \frac{56}{\text{m.b.}\ell.\zeta.\gamma}$$

Die Formelzeichen entsprechen den bisher verwendeten.

Für die Untersuchung der Schwingbeschleunigung gelten nach Erläuterungen zu DIN 1052:2004 folgende Grenzwerte

 α < 0,1 m/s² Wohlbefinden

 α < 0,35 bis 0,7 m/s² spürbar, aber nicht störend

 $\alpha > 0.7 \text{ m/s}^2$ störend

Literatur

Mohr, B (2001): Schwingungen von Wohnungsdecken aus Holz, Stahl und Beton; Vorschläge für eine zutreffende Bewertung. In: Tagungsband "Ingenieurholzbau, Karlsruher Tage 2001". Herausgeber: Bruderverlag Albert Bruder GmbH, Karlsruhe.

Blaß, H.J.; Ehlbeck, J.; Kreuzinger, H.; Steck, G. (2004). Erläuterungen zu DIN 1052:2004-08. DGfH Innovations- und Service GmbH, München. Bruderverlag, Karlsruhe.

Hamm, P.; Richter, A. (2009): Bemessungs- und Konstruktionsregeln zum Schwingungsnachweis von Holzdecken. In: Fachtagungen Holzbau 2009. Leinfelden-Echterdingen, 26. November 2009. Herausgeber: Landesbeirat Holz Baden-Württemberg e.V., Stuttgart. S. 15-29.

WÄRMEDURCHLASSWIDERSTAND

U-Wert (Wärmedurchgangszahl) bei Verwendung von Mineral- und Holzfaserdämmung

Höhe h (mm)	$\begin{aligned} &\text{Mineraldämmung}\\ &\lambda = 0,\!035 \text{ W/mK} \end{aligned}$	Holzfaserdämmung λ = 0,038 W/mK			
	U-Wert W/m²K	U-Wert W/m²K			
160	0,33	0,35			
200	0,26	0,27			
240	0,21	0,22			
280	0,18	0,19			
320	0,15	0,16			

FEUERWIDERSTAND

Prüfung unter Flächenbelastung (300kg/m²) während der Dauer von 47 Minuten.

Prüfung unter Flächenbelastung (300kg/m²) während der Dauer von 84 Minuten.

Die Feuerbeständigkeit wurde am 13. 9. 2007 laut EN 1365-2 (2001) bei den unten angeführten Probestücken geprüft.

 $Aktuelle\ Protokolle\ zur\ Klassifizierung\ des\ Feuerwiderstandes\ zum\ Download\ unter\ www.novatop-system.com.$

www.novatop-system.com 25

NOVATOP ELEMENT SCHALLSCHUTZ

	Deckengefüge	Luftschall (dB)	Trittschall (dB)
	Klebeparkett 10 mm		
	Zementestrich 80 mm		
and the second second	Mineralfaser-Trittschall 20 mm		
	Extr. Polystyrol 30 mm	D _{itot} = 58 **	L' _{tot} = 49 **
	NOVATOP ELEMENT 350 mm 3-Schichtplatte 27 mm	1,101	tung nach
	Hohlraum mit Kalkgritt ca. 40 kg/m²		
	3-Schichtplatte 27 + 33 mm (REI 60)	ISO 717-1/SIA 181/2006	ISO 717-2/SIA 181/2006
	Basierend auf Baumessung (2007); BFH Architektur, Holz-	und Bau, CH-Biel	
	Klebeparkett 10 mm		
	Zementestrich 80 mm		
	Mineralfaser-Trittschall 20 mm Extr. Polystyrol 30 mm		
	NOVATOP ELEMENT 350 mm	D. = 47 **	L' _{tot} = 59 **
	3-Schichtplatte 27 mm	i,tot	tung nach
	Hohlraum leer		T
	3-Schichtplatte 27 + 33 mm (REI 60)	ISO 717-1/SIA 181/2006	ISO 717-2/SIA 181/2006
	Basierend auf Baumessung (2007); BFH Architektur, Holz-	und Bau, CH-Biel	
	OSB-Verlegeplatten 2 x 15 mm N+F		
	Mineralfaser-Trittschall 30 mm	0	1 50
	NOVATOP ELEMENT 240 mm	$R_{\rm w} = 55$	$L_{n,w} = 58$
	3-Schichtplatte 27 mm	Bewert	tung nach T
	Hohlraum mit Kalkgritt ca. 40 kg/m ² 3-Schichtplatte 27 mm	ISO 717-1/ISO 140-3	ISO 717-2/ISO 140-6
	Basierend auf Baumessung (2007); Zentrum für Bau-Engir	neering AG Prag. C7. Arheitsstätte 7lín	
	Teppichbodenbelag 10 mm	Teering //G / rag, c2, / riberesstate Zim	L = 62
	PVC-Bodenbelag 3.5 mm		$L_{\text{n.w}}^{\text{n,w}} = 75$
	NOVATOP ELEMENT 240 mm		11,00
	3-Schichtplatte 27 mm	Bewert	tung nach
en e	Hohlraum mit Kalkgritt ca. 40 kg/m²		ISO 717-2/ISO 140-6
	3-Schichtplatte 27 mm		
	Basierend auf Baumessung (2007); Zentrum für Bau-Engi		1. 02
	NOVATOP ELEMENT 240 mm	$R_{\rm w} = 27$	L _{n,w} = 93
	3-Schichtplatte 27 mm Hohlraum leer	Bewert	tung nach T
	3-Schichtplatte 27 mm	ISO 717-1/ISO 140-3	ISO 717-2/ISO 140-6
	Basierend auf Baumessung (2007); Zentrum für Bau-Engin	neering AG Prag, CZ, Arbeitsstätte Zlín	
	NOVATOP ELEMENT 240 mm	R = 36	L _{nw} = 88
	3-Schichtplatte 27 mm	w	tung nach
	Hohlraum mit Kalkgritt ca. 40 kg/m²	ISO 717-1/ISO 140-3	ISO 717-2/ISO 140-6
tamos, sectores sectores California	3-Schichtplatte 27 mm	130 / 17-1/130 140-3	130 717-2/130 140-6
	Basierend auf Baumessung (2007); Zentrum für Bau-Engi	neering AG Prag, CZ, Arbeitsstätte Zlín	
<u> </u>	NOVATOP ELEMENT 240 mm	$R_{\rm w} = 37$	$L_{n,w} = 86$
	3-schichtige Fichten-Platte Dicke 27 mm Holzrost 180 mm, Streu aus Kalkschutt 80 kg/m²	Bewert	tung nach T
	3-schichtige Fichten-Platte Dicke 33 mm	ISO 717-1/ISO 10140-2	ISO 717-2/ISO 10140-3
	Basiert auf Labormessung (2015); Centrum stavebního in	ženýrství, a.s. Praha, CZ, Arbeitsstelle Zlín ((Protokollnummer 134/15)
	Gipsfaserplatte 20 mm		
	Holzfaserplatte 8 mm		
(((((((((((((((((((((((((((((((((((((Zementplatte 38 mm, 90 kg/m² Holzfaserplatte 20 mm		
	NOVATOP ELEMENT 240 mm	$R_{yy} = 52$	L _{nw} = 66
	3-Schichtplatte 27 mm	Bewert	tung nach
	Hohlraum leer	ISO 717-1/SIA 181/2006	ISO 717-2/SIA 181/2006
	3-Schichtplatte 27 mm Basierend auf Baumessung (2007); Zentrum für Bau-Engir		
	OSB-Belag 22 mm, N+F	Recining Ad Frag, CZ, Albeitsstatte ZIIII	
	Holzfaserplatte 8 mm		
	Zementplatte 38 mm, 90 kg/m²		
	Holzfaserplatte 20 mm	D - 50	1 – 65
	NOVATOP ELEMENT 240 mm 3-Schichtplatte 27 mm	$R_{\rm w} = 50$	L _{n,w} = 65 tung nach
	3-scnichtplatte 27 mm Hohlraum leer		1
	3-Schichtplatte 27 mm	ISO 717-1/ISO 140-3	ISO 717-2/ISO 140-6
	Basierend auf Baumessung (2007); Zentrum für Bau-Engii	neering AG Prag. C7. Arheitsstätte 7lín	

NOVATOP ELEMENT SCHALLSCHUTZ

	Deckengefüge	Luftschall (dB)	Trittschall (dB)
	Gipsfaserplatte 20 mm		
mhalamaladadamaladadamaladadada	Holzfaserplatte 8 mm		
	Estrichwabe mit Schüttung, 60 mm; 90 kg/m²	R = 59	1 -60
	NOVATOP ELEMENT 240 mm 3-Schichtplatte 27 mm	- VV	L _{n,w} = 60 vertung nach
	Hohlraum leer		
	3-Schichtplatte 27 mm	ISO 717-1/ISO 140-3	ISO 717-2/ISO 140-6
	Basierend auf Baumessung (2007); Zentrum für Bau-Engir	neering AG Prag, CZ, Arbeitsstätte Zlín	1
	Gipsfaserplatte 20 mm Holzfaserplatte 40 mm		
	Estrichwabe mit Schüttung, 30 mm; 45 kg/m²		
	NOVATOP ELEMENT 240 mm	R _w = 62	L _{n.w} = 54
	3-Schichtplatte 27 mm	Bev	vertung nach
	Hohlraum mit Kalkgritt ca. 40 kg/m²	ISO 717-1/ISO 140-3	ISO 717-2/ISO 140-6
	3-Schichtplatte 27 mm		
	Basierend auf Baumessung (2007); Zentrum für Bau-Engir	neering AG Prag, CZ, Arbeitsstätte Zlín	1
	OSB-Belag 22 mm, N+F		
	Holzfaserplatte 40 mm Estrichwabe mit Schüttung, 30 mm; 45 kg/m²		
	NOVATOP ELEMENT 240 mm	R = 62	$L_{n,w} = 56$
100000000000000000000000000000000000000	3-Schichtplatte 27 mm	W	wertung nach
520 (335/3) (23	·		
	Hohlraum mit Kalkgritt ca. 40 kg/m ²	ISO 717-1/ISO 140-3	ISO 717-2/ISO 140-6
	3-Schichtplatte 27 mm		
	Basierend auf Baumessung (2007); Zentrum für Bau-Engir	neering AG Prag, CZ, Arbeitsstätte Zlín - T	1
	Zementplatte 50 mm, 115 kg/m ² Mineralfaserplatte 40 mm		
	NOVATOP ELEMENT 240 mm	R = 58	L _{au} = 67
	3-Schichtplatte 27 mm	W	wertung nach
	Hohlraum mit Kalkgritt ca. 40 kg/m²		
	3-Schichtplatte 27 mm	ISO 717-1/ISO 140-3	ISO 717-2/ISO 140-6
	Basierend auf Baumessung (2007); Zentrum für Bau-Engir	neering AG Prag, CZ, Arbeitsstätte Zlín	1
	Gipsfaserplatte 20 mm		
	Holzfaserplatte 40 mm NOVATOP ELEMENT 240 mm	R = 60	$L_{\text{n.w}} = 62$
	3-Schichtplatte 27 mm	W	wertung nach
	Hohlraum mit Kalkgritt ca. 75 kg/m²	ISO 717-1/ISO 140-3	ISO 717-2/ISO 140-6
	3-Schichtplatte 27 mm		
	Basierend auf Baumessung (2007); Zentrum für Bau-Engir	neering AG Prag, CZ, Arbeitsstätte Zlín T	1
	Parketboden aus Eiche Dicke 12 mm Steico Underfloor Dicke 5 mm		
	Betonestrich Dicke 50 mm		
	Isover TDPT Dicke 20 mm		
	Isover TDPT Dicke 30 mm		
	Starlon Dicke 6 mm NOVATOP ELEMENT 240 mm	R = 63	L = 44
	3-schichtige Fichten-Platte Dicke 27 mm	W	wertung nach
	Holzrost 180 mm, Streu aus Kalkschutt 80 kg/m²	ISO 717-1/ISO 10140-2	ISO 717-2/ISO 10140-3
	3-schichtige Fichten-Platte Dicke 33 mm	1	
	Basiert auf Labormessung (2015); Centrum stavebního in: Parkettboden aus Eiche Dicke 12 mm	żenyrství, a.s. Praha, CZ, Arbeitsstelle Z T	(Iin (Protokollnummer 135/15)
	Steico Underfloor Dicke 5 mm		
	Betonestrich Dicke 50 mm		
	Isover TDPT Dicke 20 mm		
	Streu aus Kalkschutt 52 kg/m² 30 mm		
	Starlon Dicke 6 mm NOVATOP ELEMENT 240 mm	R = 63	$L_{n,w} = 45$
	3-schichtige Fichten-Platte Dicke 27 mm	W	vertung nach
	Holzrost 180 mm, Streu aus Kalkschutt 80 kg/m²	ISO 717-1/ISO 10140-2	ISO 717-2/ISO 10140-3
	3-schichtige Fichten-Platte Dicke 33 mm		
	Basiert auf Labormessung (2015); Centrum stavebního in:	ženýrství, a.s. Praha, CZ, pracoviště Zlír	n (č. protokol 136/15)
	Ergänzung zur Baumessung **Die Werte sind mit der Die absolute Leistungsfähigkeit des gewählten Aufba Kabelkanälen im Zementestrichbereich nicht erreicht	aus kann aufgrund eingeschobener	3 3
	$ \begin{array}{l} \textbf{Legende:} \\ D_{ttot} = D_{nT,w}(C;C_v) = \text{Baumessung; Nachhallzeitbezoge} \\ L'_{tot} = L'_{nT,w}(C;C_v) = \text{Baumessung; Nachhallzeitbezoge} \\ R_w = \text{Labormessung ohne Nebenwege für bewerte} \\ L_{n,w} = \text{Labormessung ohne Nebenwege für bewerte} \\ C_v = \text{Volumenkorrektur,} \\ C_l = \text{Spektrum-Anpassungswert zur Bewertung volumenkorrektur,} \\ \end{array} $	ener bewerteter Standard-Trittschall etes Schalldämm-Maß, eter Norm-Trittschallpegel,	lpegel,

vw.novatop-system.com 27

VERARBEITUNG, VERPACKUNG UND KENNZEICHNUNG

VERARBEITUNG

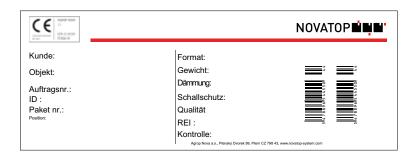
NOVATOP ELEMENT-Teile werden aus mehrlagigen verleimten SWP-Platten aus massivem Fichtenholz hergestellt. Die Feuchtigkeit bei der Auslieferung beträgt $10\% \pm 3\%$. Das Bauteil besteht aus einer unteren Tragplatte, darauf verleimten Quer- und Längsrippen und einer Deckplatte, die mit Hilfe von Positionsstiften und Leim nivelliert wird. Platten und Rippen werden miteinander verleimt und durch Pressen verfestigt. Die Hohlräume zwischen den Rippen können je nach Bedarf mit mit Wärme- und Lärmdämmung oder mit vorbereieter Leitung gefüllt werden.

Die Bearbeitung der einzelnen Teile wird auf der Großformatanlage CNC nach CAD-Daten durchgeführt. Meistens werden die Teile montagefertig ohne Bedarf an zusätzlicher Bearbeitung auf der Baustelle geliefert.

Hinweis: Der Naturcharakter von Massivholz bleibt bei diesem Produkt erhalten und reagiert deshalb auf Temperatur- und/oder Feuchtigkeitsveränderungen durch Quellen, bzw. Schwinden. Infolge unangemessener Lagerung vor der Verarbeitung und bei der Verwendung unter extremen klimatischen Bedingungen kann es zur Rissbildung und/oder zur Deformation der Platten kommen.

VERPACKUNG UND KENNZEICHNUNG

Jedes Element wird mit Identifikationsetikette versehen. Nach der Qualitätsendkontrolle werden die Platten paketiert, in eine PE-Folie verpackt (Schutz gegen Feuchtigkeits-Schwankungen, Verunreinigung und teilweise gegen mechanische Beschädigung) paketiert und mit einem Band zusammengebunden. Einzelne Pakete werden mit Identifikationsetiketten mit der Beschreibung versehen.


Platzieren der Etiketten auf dem Element

Etikette auf dem Packet

Etikette auf dem Element

NOVATOP ELEMENT LAGERUNG, TRANSPORT

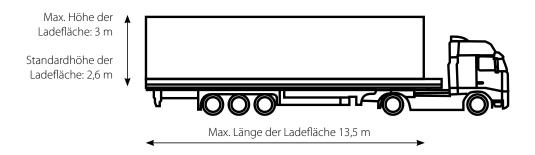
LAGERUNG

Die Platten müssen in geschlossenen und trockenen Räumen planliegend gelagert werden. Nach der Beseitigung der Schutzfolie ist es empfehlenswert, die Platten mit einem anderen Flächenmaterial zu bedecken.

Die Platten müssen vor Witterung auch auf der Baustelle geschützt werden und die Lagerung ist auf die unbedingt notwendige Zeit zu beschränken. Die Platten müssen gegen Regen und fließendes Wasser geschützt werden. Es ist zu empfehlen, als Schutz gegen Wasser, Schmutz und direkte Sonnenstrahlung wasserfeste Planen zu verwenden.

Hinweis: Die unangemessene Lagerung kann zu Beschädigungen führen, für die der Hersteller keine Garantie übernimmt.

TRANSPORT


Die Platten werden standardgemäß in LKWs (eingedeckten Aufliegern), ggf. in Containern befördert. Für die Trucker muss auf der Baustelle eine geeignete Ein- und Ausfahrt arrangiert werden.

Hinweis: Die Platten müssen müssen dauernd vor Witterung geschützt werden. Bei langen Transporten unter widrigen klimatischen Bedingungen kann sich die Produktfeuchtigkeit verändern, deswegen empfiehlt sich vor der Montage eine "Akklimatisierungszeit", bewor sie weiter bearbeitet werden (Trockung und Temperaturveränderung schrittweise).

Maximale Parameter der Ladung: 50 m³/24 t

Transport der NOVATOP- Komponenten ist auf verschiedenen LKW-Typen möglich, hängt von der Paketgröße, Entladungsweise und Transportzugänglichkeit zur Baustelle ab. Es ist notwendig die Einfahrt und Ausfahrt dieser Fahrzeuge auf die Baustelle zu gewährleisten. Nach bestimmten Bedingungen wird bei der niedrigeren Ladungsquantität aus dem Grund der Transportunterbelastung der Zuschlag berechnet.

Paketbreite	Paketlänge	Entladungsweise	Transportmöglichkeiten	Zuschlag
- 2.1 mg		Kran	Auflieger mit der Plane der Standardmaßen	
≤ 2,1 m	max. 6 m	Gabelstapler	Auflieger mit der Plane der Standardmaßen	
max. 2,4 m	max. 12 m	Kran	Auflieger mit der Plane mit der Möglichkeit der Stützenbeseitigung im oberen Teil der Zentralsäulen	
		Gabelstapler	Auflieger mit der Plane mit der Möglichkeit der Verschiebung der Zentralsäulen	
		Kran	Auflieger ohne Plane	✓
max. 2,5 m	max. 6,5 m	Gabelstapler	Auflieger mit der Plane mit der Möglichkeit der Verschiebung der Zentralsäulen	
		Kran	Auflieger ohne Plane	✓
max. 2,48 m	max. 12 m	Gabelstapler	Auflieger mit der Plane mit der Möglichkeit der Verschiebung der Zentralsäulen	
2.5.2	many 12 mg	Kran	Auflieger ohne Plane	✓
2,5–3 m	max. 12 m	Gabelstapler	Auflieger ohne Plane	✓

NOVATOP ELEMENT HANDHABUNG, MONTAGE

HANDHABUNG

Angesichts des hohen Teilegewichts ist der Einsatz von Kränen und spezieller Technik (Gabelstapler etc.) empfehlenswert, wobei das Höchstgewicht und die Reichweite zu definieren sind. Bei der Beförderung dürfen Verpackung, Kanten und Flächen nicht beschädigt werden.

NOVATOP ELEMENTE werden bereits in der Produktion zur Handhabung bereit.

In der oberen Platte des Elements werden Öffnungen für die speziellen Gurte vorbereitet. Die Elemente müssen grundsätzlich in die erwünschte Lage mit 4 Gurten positioniert werden. Zwischen dem Teil und dem Gurt ist unbedingt ein 60°-Winkel einzuhalten. Die maximale Belastung hängt von der Tragkraft der Gurte und der Tragplatte ab und wird auf 600 kg pro 1 Gurt festgelegt. Die Zahl der Gurte pro 1 Platte wird nach der Tragkraft der einzelnen Gurte festgelegt, gewöhnlich handelt es sich um 4 Stück. Die Hebegurte können beim Hersteller bestellt werden (Preisliste Nr.011.003). Krangurte,- ketten und Aufhängekörbe sind bauseitig zu besorgen.

Hinweis: Die Platten müssen müssen dauernd vor Witterung geschützt werden.

Empfohlene Handhabung

MONTAGE

Die Elemente werden möglichst montagefertig direkt an den Montageort befördert. Der Lieferung liegt ein detaillierter Verlegungs- und Montageplan bei, der den Verlauf der Montage genau festlegt. Jedes Element ist mit einer Identifikationsetikette und der Positionsnummer im Verlegungsplan versehen. Die einzelnen Platten werden mit Hilfe eines Krans positioniert und an den unteren Bauteil durch verschiedenartige Beschläge verankert. Wir empfehlen, eine genaue Lage mittels Zurrgurte festzustellen. Beim Zusammenhämmern muss die Lage der Rippen berücksichtigt werden, bei unsachgemäßem Zusammenhämmern können die Teile beschädigt werden. Für weitere Informationen siehe "Montageanleitung".

Hinweis: Die Platten müssen dauernd vor Witterung geschützt werden.

Die für den Einbau der NOVATOP Platten optimale Luftfeuchtigkeit sollte 55% bei 20° Celsius betragen. Sollte die Luftfeuchtigkeit niedriger sein, kann es zu Rissen in der Holz Struktur kommen.

Hinweis: Der Naturcharakter von Massivholz bleibt bei dem Produkt NOVATOP erhalten, daher kommt es bei Änderungen von Temperatur bzw. Feuchtigkeit zu einem Schwind- bzw. Quellverhalten. Bei einer fehlerhaften Lagerung sowie bei Verwendung der NOVATOP Platten unter extremen Bedingungen (extr. Temperatur und Feuchtigkeit) kann es zur Bildung von Rissen bzw. zu Verformungen kommen.

Für eine Produktbeschädigung infolge unangemessener Lagerung, Verarbeitung und Anwendung oder das Nichtbeachten der Verarbeitungshinweise, übernimmt der Produzent keine Garantie.

NOTIZEN

www.novatop-system.com

Hersteller: AGROP NOVA a.s. Ptenský Dvorek 99 798 43 Ptení Tschechische Republik Tel.: +420 582 397 856 novatop@agrop.cz www.novatop-system.com

f novatopde

Herstellerzertifikate:

Zertifikate des Herstellers AGROP NOVA a.s. sind auf $den \ Firmen-Webseiten \underline{novatop\text{-}system.com} \ zu \ finden.$